Tag Archives: #666600

Mastery 19

Use of loops with “while”

while loop statement repeatedly executes a target statement as long as a given condition is true.

Syntax:

The syntax of a while loop in C++ is:

Here, statement(s) may be a single statement or a block of statements. The condition may be any expression, and true is any non-zero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following the loop.

Flow Diagram:

Mastery 19

Here, key point of the while loop is that the loop might not ever run. When the condition is tested and the result is false, the loop body will be skipped and the first statement after the while loop will be executed.

Example:

When the above code is compiled and executed, it produces the following result:

Credits:

http://www.tutorialspoint.com/cplusplus/cpp_while_loop.htm

1017 18 

Mastery 18

Nesting of conditional statements

It is always legal to nest if-else statements, which means you can use one if or else if statement inside another if or else if statement(s).

Syntax:

The syntax for a nested if statement is as follows:

 

You can nest else if…else in the similar way as you have nested if statement.

Example:

When the above code is compiled and executed, it produces the following result:

Credits:

http://www.tutorialspoint.com/cplusplus/cpp_nested_if.htm

1017 18

Mastery 17

Use of “switch” as a conditional

switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and the variable being switched on is checked for each case.

Syntax:

The syntax for a switch statement in C++ is as follows:

switch(expression){
    case constant-expression  :
       statement(s);
       break; //optional
    case constant-expression  :
       statement(s);
       break; //optional
  
    // you can have any number of case statements.
    default : //Optional
       statement(s);
}

The following rules apply to a switch statement:

  • The expression used in a switch statement must have an integral or enumerated type, or be of a class type in which the class has a single conversion function to an integral or enumerated type.

  • You can have any number of case statements within a switch. Each case is followed by the value to be compared to and a colon.

  • The constant-expression for a case must be the same data type as the variable in the switch, and it must be a constant or a literal.

  • When the variable being switched on is equal to a case, the statements following that case will execute until a break statement is reached.

  • When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following the switch statement.

  • Not every case needs to contain a break. If no break appears, the flow of control will fall throughto subsequent cases until a break is reached.

  • switch statement can have an optional default case, which must appear at the end of the switch. The default case can be used for performing a task when none of the cases is true. No break is needed in the default case.